Getting Away from Sliding Scale Insulin
A system-based approach to improve patient outcomes in the inpatient setting
Andrew Ahmann, MD
Harold Schnitzer Diabetes Health Center

Time For A Reality Check
- Diabetes and hyperglycemia are common in the hospital
- Hyperglycemia negatively impacts hospital outcomes
- Glucose goals are somewhat uncertain
- The key is balance between control of hyperglycemia and avoiding hypoglycemia
- Practical approaches have evolved
- Special situations require modifications

Hyperglycemia in the Hospital
- Diabetes:
 - Previously diagnosed
 - Previously undiagnosed
 - HbA1c > 6.5% during admission
- Hyperglycemia without diabetes diagnosis
 - Diabetes diagnosed on follow-up
 - Prediabetes with overt hyperglycemia during acute physiologic stress
 - Hyperglycemia due to physiologic stress without underlying metabolic abnormality
 - normal follow-up testing

Hyperglycemia In The Hospital
- Mortality = 16%
- Mortality = 11%
- Mortality = 63%
- Diabetes
- New Hyperglycemia
- Normal

Hyperglycemia due to physiologic stress without underlying metabolic abnormality

Action And Reaction Over A Decade
- Before 2001 – talk but no action
 - Some evidence for concept

Detrimental Physiologic Impact of Hyperglycemia
Metabolic stress response
- Stress hormones and peptides
- Glucose
- FFA
- Ketones
- Lactate
- Reactive O2 species
- Transcription factors
- Secondary mediators
- Platelet aggregation
- IPA activity
- PAI levels

Thirty-Day Mortality and In-Hospital Complication Rates are Increased in Surgical Patients with Diabetes

Nosocomial Infection Rates Within The First 14 Postoperative Days after Elective Surgery

Hospital Mortality Rates and Glucose Levels in Non-ICU Patients

Absolute risk of adverse outcome (death or prolonged stay) increased 15% per 18-mg/dL increase in glucose levels

Improved Outcomes with Basal-Bolus Insulin in Non-ICU Surgical Patients

Umpierrez et al Diabetes Care 2011; 34:256-261

Portland Diabetes Protocol: Insulin Infusion Reduces DSWI

Action And Reaction Over A Decade

Before 2001 – Talk but no action
2001 – Van den Berghe SICU study
– Prompted accelerated efforts to improve inpatient glucose control
Intensive Insulin Therapy in the Surgical ICU
Improved Survival

<table>
<thead>
<tr>
<th>Days After Admission</th>
<th>Survival in ICU %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>96</td>
</tr>
<tr>
<td>40</td>
<td>92</td>
</tr>
<tr>
<td>60</td>
<td>88</td>
</tr>
<tr>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>120</td>
<td>76</td>
</tr>
<tr>
<td>140</td>
<td>72</td>
</tr>
<tr>
<td>160</td>
<td>68</td>
</tr>
<tr>
<td>180</td>
<td>64</td>
</tr>
</tbody>
</table>

Mortality ↓ 42%, P = .04

<table>
<thead>
<tr>
<th>Days After Admission</th>
<th>In-Hospital Survival %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>96</td>
</tr>
<tr>
<td>40</td>
<td>92</td>
</tr>
<tr>
<td>60</td>
<td>88</td>
</tr>
<tr>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>120</td>
<td>76</td>
</tr>
<tr>
<td>140</td>
<td>72</td>
</tr>
<tr>
<td>160</td>
<td>68</td>
</tr>
<tr>
<td>180</td>
<td>64</td>
</tr>
</tbody>
</table>

Mortality ↓ 34%, P = .01

Glycemic Targets in Hospitalized Patients in 2005

AACE/ ACE Targets
- Intensive care unit
 - 110 mg/dL
- Medical/surgical floors
 - 110 mg/dL preprandial
 - 180 mg/dL maximal glucose

ADA Targets
- Critically ill
 - As close to 110 mg/dL as possible and usually under 180 mg/dL
- Noncritically ill
 - Premeal glucose 90-130 mg/dl
 - Postprandial glucose < 180 mg/dl

ADA Standards of Medical Care Diabetes Care 2006; http://www.aace.com/pub/ICC/inpatientStatement.php

Action And Reaction Over A Decade

- **Before 2001** – talk but no action
- **2001** – Van den Berghe SICU study
 - Prompted accelerated efforts to improve inpatient glucose control

Institutional system changes ensued as hospitals attempted to achieve improved glucose control

System Changes to Improve Glucose Control

- Multidisciplinary teams/ committees
 - Nursing
 - Hospitalists
 - Anesthesiology
 - Surgeons
 - Pharmacists
 - Quality Assurance
 - Others
- Protocol development
 - ICU insulin infusions
 - Optimal subcutaneous insulin including special situations
 - Transitions
- Forms (orders, flowsheets, kardex)
- Education/ training for all involved individuals
- Monitoring/ glucometrics

Glucometrics: Guiding Success

- Data collection:
 - Automatic or manual
 - Must be validated (reviewed)
- Primary parameters
 - Efficacy (according to goals)
 - Safety (frequency of hypoglycemia at various levels)
- Multiple options for meaningful expression
- The process is greatly aided by advancing technology, particularly relating to EMRs

Glucometrics

- more easily determined by IT systems with EMR -

Oregon Health & Science University
Strategies To Improve Glucose Control

- Staff education to facilitate change in practices
- Hospital protocols to include all staff providers
 - Paper vs computerized
- Glycemic consult team
 - Diabetes educator driven
 - NP or Pharm D model
 - Endocrinologist model
 - Hospitalists
 - Alone
 - In concert with an endocrinologist and nurse.
 - Hybrids

Hospitalist Based Glycemic Treatment Team Improves Mean Full Hospitalization CBG in Surgical Patients

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Month</th>
<th>Mean Full Hospitalization CBG (mg/dL)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-6 to 0</td>
<td>196</td>
<td>36</td>
</tr>
</tbody>
</table>

Glycemic Treatment Team

| | 0 to 3 | 165* | 29 |
| | 12-15 | 162**| 22 |

*p<0.005, **p<0.001 vs. baseline

Action And Reaction Over A Decade

- **Before 2001** – talk but no action
- **2001** – Van den Berghe SICU study
- **2003** – AACE guidelines with ICU goal <110
 - ADA involved but slightly modified the guidelines
- **2004** – ADA Technical Review published
- **2004-2008** – Incomplete studies and many questions
 - Meta-analyses failed to confirm generalized value of intensive therapy in the ICU

Characteristics of These Studies

- Many used modifications of the Leuven protocol extended to a multicenter trial
- High frequency of hypoglycemia
 - 10-20% of patients having a glucose <40 mg/dl
- In most cases the targets were not met
- Control group targets were lower
- Most of the studies stopped early (underpowered) but didn’t show statistical differences
- Raise questions of the consequences of hypoglycemia

Glucose Control in the ICU/CCU: The Questions

<table>
<thead>
<tr>
<th>Trial</th>
<th>Setting</th>
<th>G1 Target</th>
<th>G2 Achieved*</th>
<th>G2 Achieved**</th>
<th>End Points</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGAMI2 2006</td>
<td>ICU (2004-2005)</td>
<td>110-140 mg/dL (6-8 mmol/L)</td>
<td>70 mmol/L</td>
<td>14.5%</td>
<td>30.9%</td>
<td>3.04 (1.6-5.8)</td>
</tr>
<tr>
<td>Van der Berghe 2006</td>
<td>ICU (2001-2002)</td>
<td>80-110 mg/dL (4.4-6.1 mmol/L)</td>
<td>78 mmol/L</td>
<td>18.5%</td>
<td>24.7%</td>
<td>2.42 (0.98-6.0)</td>
</tr>
<tr>
<td>ISS 2006</td>
<td>ICU (2004-2005)</td>
<td>80 mmol/L</td>
<td>60-70 mmol/L</td>
<td>34.6%</td>
<td>37.9%</td>
<td>1.19 (0.8-1.8)</td>
</tr>
<tr>
<td>Goellner 2007</td>
<td>ICU (2005-2007)</td>
<td>80 mmol/L</td>
<td>60-70 mmol/L</td>
<td>41.9%</td>
<td>45.9%</td>
<td>1.21 (0.36-4.4)</td>
</tr>
<tr>
<td>Goellner 2007</td>
<td>ICU (2005-2007)</td>
<td>80 mmol/L</td>
<td>60-70 mmol/L</td>
<td>41.9%</td>
<td>45.9%</td>
<td>1.21 (0.36-4.4)</td>
</tr>
<tr>
<td>VISEP 2008</td>
<td>ICU (2004-2005)</td>
<td>80-110 mg/dL (4.4-6.1 mmol/L)</td>
<td>78 mmol/L</td>
<td>23.4%</td>
<td>26.0%</td>
<td>1.3% (0.8-2.1)</td>
</tr>
<tr>
<td>De La Rosa 2008</td>
<td>ICU (2004-2005)</td>
<td>80 mmol/L</td>
<td>60-70 mmol/L</td>
<td>34.6%</td>
<td>37.9%</td>
<td>1.19 (0.8-1.8)</td>
</tr>
</tbody>
</table>
The Story of Inpatient Glucose Control Over the Last Decade (cont)

2009 – Nice Sugar study completed
- Accentuated concerns about intensive therapy in ICU

2009 – New Guidelines from AACE / ADA
- Target glucose 140-180 mg/dL

AACE/ADA Target Glucose Levels in Non–ICU Patients
- Premeal glucose targets <140 mg/dL
- Random BG <180 mg/dL
- To avoid hypoglycemia, reassess insulin regimen if BG levels fall below 100 mg/dL
- Occasional patients may be maintained with a glucose range below and/or above these cut-points

Hypoglycemia = BG <70 mg/dL
Severe hypoglycemia = BG <40 mg/dL

AACE/ADA Target Glucose Level in ICU Patients
- Starting threshold of no higher than 180 mg/dL
- Once IV insulin is started, the glucose level should be maintained between 140 and 180 mg/dL
- Lower glucose targets (110-140 mg/dL) may be appropriate in selected patients
- Targets <110 mg/dL or >180 mg/dL are not recommended

NICE-SUGAR Study: Results
- 3054 received ITT goal: 81-108 mg/dL
- 3050 received CIT goal: <180 mg/dL

- 90-day mortality: ITT, 829 patients (27.5%); CIT, 751 (24.9%)
- Absolute mortality difference: 2.6% (95% CI, 0.4-4.8)
- Odds ratio for death with ITT: 1.14 (95% CI, 1.02-1.28; P =.02)

The Story of Inpatient Glucose Control Over the Last Decade (cont)

2009 – Nice Sugar study completed
- Accentuated concerns about intensive therapy in ICU

2009 – New Guidelines from AACE / ADA
- Target glucose 140-180 mg/dL

AACE/ADA Target Glucose Consensus Statement

- Starting threshold of no higher than 180 mg/dL
- Lower glucose targets (110-140 mg/dL) may be appropriate in selected patients

Hypoglycemia = BG <70 mg/dL
Severe hypoglycemia = BG <40 mg/dL

New Guidelines from ACP
- Target glucose 140-200 mg/dL
- Partly the result of Kansagara et al systematic review

Question of wrong message
- Intensive therapy in ICU patients defined by a goal < 110 mg/dL with present insulin infusions is not advisable.
Possible Reasons The Studies Failed to Show Benefit of Tight Glucose Control
- The general hypothesis is wrong.
- Normal glucose levels are bad for some groups.
- The adverse effects of hypoglycemia offsets the benefits of improved mean glucose.
- Glucose variability reduces the benefits of lower mean glucose.

Hyperglycemia-related Mortality in the ICU is Related to Disease State
Study of 259,040 admissions to VA ICUs

Significant Association:
- Unstable angina
- Acute MI
- CVA
- Arrhythmia
- Respiratory failure
- GI bleed
- Pneumonia
- Sepsis
- Acute renal failure
- CVA
- PE
- Colectomy
- Vae surgery
- Gout surgery

Not statistically associated
- COPD
- Hepatic failure
- GI bleed
- GI perforation
- Peripheral arterial bypass
- Muscle skeletal problems
- CABG
- Amputation
- Hip fracture

What Are Some Possible Contributory Factors if Hypoglycemia is the Problem?
- Some disease states are prone to adverse effects of hypoglycemia.
- POC monitoring accuracy is inadequate to support tight glucose goals.
- Our insulin infusion algorithms are inadequate to reach goals without excess hypoglycemia and variability.

POC Meter Interferences

<table>
<thead>
<tr>
<th>Glucose Oxidase</th>
<th>Glucose Dehydrogenase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole blood</td>
<td>-</td>
</tr>
<tr>
<td>Arterial blood</td>
<td>-</td>
</tr>
<tr>
<td>Capillary blood</td>
<td>-</td>
</tr>
<tr>
<td>Ascorbic Acid</td>
<td>-</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>-</td>
</tr>
<tr>
<td>Hypotension</td>
<td>-</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>-</td>
</tr>
<tr>
<td>Dopamine</td>
<td>-</td>
</tr>
<tr>
<td>Mannitol</td>
<td>-</td>
</tr>
</tbody>
</table>

Dungan K et al. Diabetes Care 2007 30:403
Assessment on POC Glucose in Hospital

- POC testing with meters is common in the acute care setting to direct IV insulin infusions.
- Present accuracy in this setting could contribute to hypoglycemia with intensive targets.
- Advances in glucose meters are likely to help this problem.
- For now, other methods are preferred for tight targets of < 110 mg/dl.

Controlling Glucose In The Hospital
Practical Aspects

Recommendations for Managing Inpatient Hyperglycemia

Antihyperglycemic Therapy

Insulin
- Recommended
- Critically ill patients in the ICU

OADs
- Not Generally Recommended
- Non-critically ill patients

IV Insulin
- NPH 2-4 times daily
 - Give 50% for meals if eating
 - Apportion according to relative meal size
 - Can give after the meal if intake uncertain

SC Insulin
- Detemir (12-24 hours)
 - Can give after the meal if intake uncertain

Insulin Requirements in Health and Illness

Insulin Time-action profiles Duration

Aspart, Lispro, Glulisine (4-6 hours)

starting insulin in the hospital

Patient Previously on Oral Agents

- Consider a 24 hour insulin dose of 0.5-0.6 units/kg/day
 - Lower dose in elderly and thin
- Give 50% of this as basal
 - Glargine or detemir once daily
 - NPH 2-4 times daily
- Give 50% for meals if eating
 - Apportion according to relative meal size
 - Can give after the meal if intake uncertain
- Use supplemental scale and adjust

Sliding Scales: An Addiction We Can’t Overcome?

Sliding “Scare” insulin doesn’t work well.

Randomized Basal Bolus versus Sliding Scale Regular Insulin in patients with type 2 Diabetes Mellitus (RABBIT-2 Trial)

- D/C oral antidiabetic drugs on admission
- Starting total daily dose (TDD):
 - 0.4 U/kg/d x BG between 140-200 mg/dL
 - 0.5 U/kg/d x BG between 201-400 mg/dL
- Half of TDD as insulin glargine and half as rapid-acting insulin (lispro, aspart, glulisine)
 - Insulin glargine - once daily, at the same time/day.
 - Rapid-acting insulin - three equally divided doses (AC)

Rabbit 2 Trial: Changes in Glucose Levels With Basal-Bolus vs Sliding Scale Insulin

Mean overall BG difference between the groups during hospital stay was 27 mg/dL ($P<.01$)

Rabbit 2 Trial: Treatment Success With Basal-Bolus vs Sliding Scale Insulin

BG target of <140 mg/dL was achieved in 66% using B/B of patients vs 38% using SSI

14% of patients using SSI remained with BG >240 mg/dL and were switched to B/B

Inpatient Diabetes Management: Supplemental Insulin

- Supplemental insulin is OK -- *sliding scale is not!*
- May use a protocol with various levels of expected insulin sensitivity or use outpatient rules of sensitivity with allowance for stress
- If supplemental doses do not reduce the next glucose to < 150 mg/dL, increase the scale appropriately
- Supplemental requirements should be reviewed each 24 hours and often added to the next day’s baseline dose at the appropriate times

Transition From IV to SC Insulin: Risk For Loss Of Glucose Control

P<.001

IP, intensive insulin protocol.

Transition of IV to Subcutaneous Insulin Some Dos & Don’ts

- Place patients needing significant IV insulin doses on physiologic insulin regimens (meal plus basal).
- Don’t use basal insulin alone in patients with very poor control on two or more oral agents.
- Use correction doses for temporary hyperglycemia.
- Overlap SC and IV to minimize “hyperlglycemia escape” related to short ½ life of IV insulin.
 - Or give 10% bolus of rapid-acting analog at transition
- Use post meal rapid analogs for uncertain ability to consume food.

Basics of SC Insulin After IV

Converting From IV Insulin Infusion to SC In The Hospital Without Rapid Medical Improvement

- Calculate the IV basal insulin requirement
 - Insulin delivered overnight for 4 hours (stability)
 - Multiply by 6 = 24 hour basal requirement
 - Multiply by 80% to get a safe SC dose /24 hours
 - Example:
 - Overnight the patient averaged 1.2 u/hr = 4.8 u/ 4 hours
 - 4.8 x 6 = 30 units
 - 30 x .8 = 24 units
 - 24 units glargine or detemir before breakfast or bedtime or 24 u N in 2-4 doses
 - Adjust according to overnight glucose control

Converting From IV Insulin Infusion to SC In The Hospital With Rapid Medical Improvement

- Calculate the IV basal insulin requirement
 - Insulin delivered overnight for 4 hours (stability)
 - Multiply by 6 = 24 hour basal requirement
 - Multiply by 80% to get safe 24 hour basal dose
 - Example:
 - Overnignt the patient averaged 1.2 u/hr = 4.8 u/ 4 hours
 - 4.8 x 6 = 30 units
 - 30 x .8 = 24 units
 - 24 units glargine or detemir before breakfast or bedtime or 24 u N in 2-4 doses
 - Adjust according to overnight glucose control

Typical Blood Glucose Pattern With Morning Steroid Therapy

- Morning glucose is often down to baseline
Inpatient Therapy of Ill Patients Who Have Been on Intravenous Insulin and AM Steroids

- Use intravenous insulin with intravenous glucose until the patient can eat
- Use IV insulin dose of the last 24 hours to estimate the 24 hour SC insulin requirement

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>L</th>
<th>Dinner</th>
<th>HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular/Analog</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>NPH</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glargine/Detemir</td>
<td></td>
<td>40%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjust as indicated by CBGs

Treating Steroid Induced Hyperglycemia

U Colorado NPH Approach

- Evaluated 20 patients with CF related DM
 - Given prednisolone in the hospital
 - On glargine + RAA insulin
 - Added NPH to the admission regimen
 - 1 unit per mg of PRED up to 20 mg
 - Add 0.5 u/mg from 21-40 mg
 - Add 0.25 u/mg over 40 mg
 - Compared to increased basal-bolus insulin
 - Both groups had a 40% increase in TDI (90 u/d)
- The group with NPH did better (p < 0.001)

Special Nutrition Considerations

<table>
<thead>
<tr>
<th>Nutrition Method</th>
<th>Insulin Component</th>
<th>Possible Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolus tube feedings</td>
<td>Basal insulin 40% of TDD + Nutritional insulin 60% of TDD as RAA</td>
<td>RAA insulin scheduled with each bolus feeding + RAA insulin correction (later increase scheduled) + Basal insulin (glargine or levemir q 12)</td>
</tr>
<tr>
<td>Continuous tube feedings</td>
<td>Basal insulin 40% of TDD + Nutritional insulin as 60% of TDD as divided doses</td>
<td>RAA q 4 hours regular q 6 hours or NPH q 8 hours + Basal insulin</td>
</tr>
<tr>
<td>Parenteral nutrition</td>
<td>Give insulin IV with nutrition</td>
<td>Dose find with IV insulin infusion followed by 80% placed in TPN Plus correction insulin.</td>
</tr>
</tbody>
</table>

RAA = Rapid Acting Analog insulin (aspart, glulisine, lispro)

Features Increasing the Risk of Hypoglycemia in an Inpatient Setting

- Advanced age
- Renal failure
- Liver disease
- Concurrent illness (cerebral vascular accident, congestive heart failure, shock, sepsis)
- Ventilator use
- Concurrent medications (β-blockers, quinolones, steroids, epinephrine)

Events Triggering In-hospital Hypoglycemia

- Transportation off ward, causing meal delay
- Failure to measure blood glucose before insulin doses
- New NPO status
- Interruption of
 - IV dextrose therapy
 - Total parenteral nutrition
 - Enteral feedings
 - Continuous venovenous hemodialysis